PAPER

PRACtice QuESTIONS

Note: Some UNSW Global assessments are only available online.

Science

DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED.

Read the instructions on the ANSWER SHEET and fill in your NAME, SCHOOL and OTHER INFORMATION.
Use a pencil. Do NOT use a coloured pencil or a pen.
Rub out any mistakes completely.

You MUST record your answers on the ANSWER SHEET.

Mark only ONE answer for each question.
Your score will be the number of correct answers.
Marks are NOT deducted for incorrect answers.

Use the information provided to choose the BEST answer from the four possible options.

On your ANSWER SHEET fill in the oval that matches your answer.

[^0]
Forquestions 1 and 2 use the information below.

The key distinguishes between types of supernova according to the light they emit.

1. Does the spectrum contain hydrogen lines?	Yes go to 4
No go to 2	
2. Does the spectrum contain silicon lines?	Yes Type 1a No go to 3
3. Does the spectrum contain helium lines?	Yes Type 1b
	No Type 1c
4. Are helium lines dominant in the spectrum?	Yes Type 2b
	No go to 5
5. Does the light curve decay linearly after peak brightness?	Yes Type 2l
	No Type 2p

1. A supernova shows both hydrogen and helium lines in its spectrum but the helium lines are much stronger than the hydrogen lines.

What type of supernova is it?
(A) Type 1b
(B) Type 2b
(C) Type 21
(D) Type 2p
2. Which description best fits the spectrum of a Type 1c supernova?

	Hydrogen lines	Helium lines	Silicon lines
(A)	present	absent	present
(B)	absent	absent	absent
(C)	present	present	present
(D)	absent	present	absent

3. In general, solvents with the lowest boiling points release the most vapour into the air. Flammable solvents can explode if a spark or flame is present.

The table gives facts about some commonly used solvents. The solvents listed can all enter the body through the lungs or skin or by swallowing.

Name	Boiling Point (C)	Flammability	Toxicity	Solubility in water	Carcinogenic
acetone	57	high	low	very soluble	no
acetic acid	118	low	low	very soluble	no
carbon tetrachloride	77	nonflammable	medium	insoluble	probably
chloroform	61	nonflammable	high	insoluble	probably
ethanol	79	high	low	very soluble	yes, heavy drinkers only
ether	35	very high	medium	slightly soluble	no
methanol	65	high	high	very soluble	no

Methanol is used as a fuel in motor racing. People fuelling cars with methanol have been known to spill a large amount of fuel on themselves and catch alight.

Which option describes the best way of dealing with the fire and removing the methanol?
(A) Allow the methanol to burn away then use the fire blanket.
(B) Spray the person with carbon tetrachloride.
(C) Hose the person with cold water.
(D) Wrap the person in an airproof fire blanket.
4. In forensic science, blood alcohol content is tested at the time of sampling and, if challenged in court, from a stored sample.

A student wanted to know how the tightness of the lid of a screw-topped container affected the loss of alcohol over time. He assumed alcohol behaved the same way in blood and water.

He partially filled three containers with equal quantities of $0.1 \mathrm{~g} \mathrm{L-1} \mathrm{alcohol} \mathrm{solution}$. lids as follows.

- loose lid - tighten until resistance is experienced then turn lid back 1 mm .
- firm lid - tighten until resistance is just experienced.
- tight lid - tighten until resistance is just experienced then turn a further 1 mm forward. The solutions were then stored in a storage cabinet at $30^{\circ} \mathrm{C}$ for a number of weeks.

His results are shown in the graph.

By how many grams per litre has the concentration dropped after three weeks in the container with the tight lid?
(A) 0.005
(B) 0.01
(C) 0.09
(D) 0.095
5. Acceleration due to gravity is different on different planets. It depends on the mass and the radius of the planet, as shown in the formula.

$$
g=G \frac{m}{r^{2}}
$$

KEY

\mathbf{g} is the acceleration of an object due to the planet's gravity
\mathbf{G} is a constant
\mathbf{m} is the mass of the planet
r is the radius of the planet

The table below shows the mass and radius of some planets compared to Earth.

Planet	Mass compared to Earth	Radius compared to Earth
Mercury	0.055	0.38
Venus	0.86	0.95
Earth	1.0	1.0
Mars	0.11	0.53

Which planet has the smallest acceleration due to gravity on the surface?
(A) Mercury
(B) Venus
(C) Earth
(D) Mars

HOW TO FILL OUT THIS SHEET: USE A PENCIL

- Print your details clearly in the boxes provided.
- Make sure you fill in only one oval in each column.
- Rub out all mistakes completely.
- Do not use a coloured pencil or pen.

EXAMPLE 1: Debbie Bach first name Last name

EXAMPLE 2: Chan Ai Beng

first name Last name

EXAMPLE 3: Jamal bin Abas

FIRSt name								LASt NAME			
J	A	M	A 1	L	B		N	A	B		A $S^{\text {S }}$
						${ }^{\text {® }}$	$\begin{aligned} & \text { BC } \\ & A C \\ & \text { Br } \\ & \hline 1 \end{aligned}$				

FIRST NAME to appear on certificate

LAST NAME to appear on certificate

 (A) (A)

 $\oplus \oplus \oplus(\oplus)$ 59)(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) -

 (1) (®) (®)(®)(®)(®)(®)(®)(®)(®)(®) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (®) (1) (1)

 $\otimes \otimes \otimes$
 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) $\odot \odot \odot$

Are you male or female? ○ Male

- FemaleDoes anyone in your home usuallyspeak a language other than English? \bigcirc Yes \bigcirc No
School name:

DATE OF BIRTH

STUDENT ID (optional)

CLASS (optional)

TO ANSWER THE QUESTIONS

Example:

Ari added cordial to water to make a jug of drink. What will be the volume of the drink in the jug?
(A) 50 mL
(B) 150 mL
(C) 200 mL
(D) 250 mL

The answer is 250 mL , so you would fill in the oval \odot, as shown.
(A) (B) (C)

USE A PENCIL
DO NOT USE A COLOURED PENCIL OR PEN

START

1	(A)	(B)	(c)	(1)
2	(A)	(B)	©	(1)
3	(A)	(B)	©	(1)
4	(A)	(B)	©	(1)
5	(A)	(B)	(c)	(1)

QUESTION	KEY	KEY REASONING	LEVEL OF DIFFICULTY
1	B	Start at the top, number 1 . The supernova has hydrogen lines, go to number 4. It has dominant helium lines therefore it is Type 2b.	Easy
2	B	In the key, work backwards from Type 1c, starting from number 3. The supernova does not have helium lines in number 3 (so C and D are wrong). At number 2, Type 1c didn't have silicon lines in order to get to number 3 (so A and C are wrong). Finally, at number 1, Type 1c didn't have hydrogen lines in order to get to number 2 (so A and C are wrong).	Easy
3	C	Methanol is water soluble, thus removing the highly toxic chemical, would cool the person's burns, thus reducing the severity of any burns, and cool the flames, thus putting out the fire. Carbon tetrachloride is a chemical that will probably cause cancers and is also moderately toxic so should not be used to spray on people. Therefore B is wrong. Methanol is highly toxic so wrapping the spilt methanol with the person in a fire blanket would not be recommended, so D is wrong.	Medium
4	A	The tight column in the graph shows that after three weeks the concentration in the tight lidded container dropped from $0.10 \mathrm{gL}^{-1}$ to approximately 0.095 gL^{-1} which is a difference of $0.005 \mathrm{gL}^{-1}$. Please note that the question asks for the difference after three weeks and not seven weeks.	Hard
5	A	Calculations - compared to Earth's gravity, where $g_{\mathrm{E}} \alpha\left(\frac{\mathrm{m}_{\mathrm{E}}}{\mathrm{r}_{\mathrm{E}}^{2}}\right)=9.8 \mathrm{~m} / \mathrm{s}^{2}$: Mercury: $\mathrm{g}=\frac{0.055 \mathrm{~m}_{\mathrm{E}}}{\left(0.38 \mathrm{r}_{\mathrm{E}}\right)^{2}}=\frac{0.055}{0.38^{2}}\left(\frac{\mathrm{~m}_{\mathrm{E}}}{\mathrm{r}_{\mathrm{E}}^{2}}\right)=3.7 \mathrm{~m} / \mathrm{s}^{2}$ Venus: $\quad g=\frac{0.86 \mathrm{~m}_{\mathrm{E}}}{\left(0.95 \mathrm{r}_{\mathrm{E}}\right)^{2}}=\frac{0.86}{0.95^{2}}\left(\frac{\mathrm{~m}_{\mathrm{E}}}{\mathrm{r}_{\mathrm{E}}^{2}}\right)=9.3 \mathrm{~m} / \mathrm{s}^{2}$ Mars: $\quad g=\frac{0.11 \mathrm{~m}_{\mathrm{E}}}{\left(0.53 \mathrm{r}_{\mathrm{E}}\right)^{2}}=\frac{0.11}{0.53^{2}}\left(\frac{\mathrm{~m}_{\mathrm{E}}}{\mathrm{r}_{\mathrm{E}}^{2}}\right)=3.8 \mathrm{~m} / \mathrm{s}^{2}$	Medium

LEGEND

Level of difficulty refers to the expected level of difficulty for the question.
Easy more than 70% of candidates will choose the correct option.
Medium about $50-70 \%$ of candidates will choose the correct option.
Medium/Hard about 30-50\% of candidates will choose the correct option.
Hard less than 30% of candidates will choose the correct option.

the following year levels should sit this paper

Australia ${ }^{\mathbf{1}}$	Year 10
Brunei	Form 5
Egypt	Year 10
Hong Kong	Form 4
Indian Subcontinent ${ }^{\mathbf{2}}$	Class 10
Indonesia	Year 11
Malaysia	Form 4
Middle East ${ }^{\mathbf{3}}$	Class 10
New Zealand/ Pacific $^{\mathbf{4}}$	Year 11
Singapore	Secondary 3
Southern Africa ${ }^{\mathbf{5}}$	Grade 10

\|ा\|ाताIIII

1 All international schools registered with UNSW Global (which have an 8 -digit school code starting with 46) should sit the papers according to the Australian year levels.
2 Indian Subcontinent Region: India, Sri Lanka, Nepal, Bhutan and Bangladesh.
3 Middle East Region: United Arab Emirates, Qatar, Kuwait, Saudi Arabia, Bahrain, Oman, Turkey, Lebanon, Tunisia, Morocco, Libya, Algeria, Jordan and Pakistan.
4 Pacific Region: Vanuatu, Papua New Guinea and Fiji.
5 Southern Africa Region: South Africa, Botswana, Lesotho, Swaziland, Southern Africa Region:
Zimbabwe and Namibia.

[^0]: You may use a calculator and a ruler.

